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Abstract 

Background:  Asthma exacerbations are triggered by a variety of clinical and environmental factors, but their relative 
impacts on exacerbation risk are unclear. There is a critical need to develop methods to identify children at high-risk 
for future exacerbation to allow targeted prevention measures. We sought to evaluate the utility of models using 
spatiotemporally resolved climatic data and individual electronic health records (EHR) in predicting pediatric asthma 
exacerbations.

Methods:  We extracted retrospective EHR data for 5982 children with asthma who had an encounter within the 
Duke University Health System between January 1, 2014 and December 31, 2019. EHR data were linked to spatially 
resolved environmental data, and temporally resolved climate, pollution, allergen, and influenza case data. We used 
xgBoost to build predictive models of asthma exacerbation over 30–180 day time horizons, and evaluated the contri-
butions of different data types to model performance.

Results:  Models using readily available EHR data performed moderately well, as measured by the area under the 
receiver operating characteristic curve (AUC 0.730–0.742) over all three time horizons. Inclusion of spatial and tem-
poral data did not significantly improve model performance. Generating a decision rule with a sensitivity of 70% 
produced a positive predictive value of 13.8% for 180 day outcomes but only 2.9% for 30 day outcomes.

Conclusions:  EHR data-based models perform moderately wellover a 30–180 day time horizon to identify children 
who would benefit from asthma exacerbation prevention measures. Due to the low rate of exacerbations, longer-
term models are likely to be most clinically useful.

Trial Registration: Not applicable.
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Introduction
Asthma is a chronic airway disease that affects over five 
million children in the United States [1]. While asthma 
can often be well controlled via medical therapy, 

including through the use of regular controller medi-
cations such as inhaled corticosteroids, exacerbations 
requiring emergency treatment are common. Over 
half of all children with asthma experience an exacer-
bation each year, with one in six visiting an emergency 
department and one in 20 requiring hospitalization 
for an asthma exacerbation [2, 3]. Importantly, asthma 
exacerbations comprise the majority of asthma-related 
healthcare costs, and there is a significant need to 
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better identify children at high-risk for future exacerba-
tions to allow targeted preventive interventions.

Asthma exacerbations are known to be triggered 
by a variety of clinical, environmental, and seasonal 
exposures; however, the interplay of these factors and 
their impacts on the risk of exacerbation are not well 
understood [4]. For example, children with asthma and 
seasonal allergies may experience an increase in exac-
erbation risk when pollen counts are high, whereas 
children without seasonal allergies will not be affected. 
Similarly, air pollution may have a significant impact 
on children who live in neighborhoods that are close 
to highways. Efforts to prevent asthma exacerbations 
have focused on evidence-based efforts such as patient/
family education, asthma action plans, identification 
and remediation of environmental triggers, identifica-
tion and treatment of contributing comorbidities such 
as atopic disease and obesity, and methods to improve 
asthma controller medication adherence. Given the 
significant heterogeneity in asthma presentations and 
risk factors, it is difficult to identify patients who are at 
greatest risk of exacerbations and who may benefit most 
from targeted interventions [5]. Moreover, the con-
tribution of different types of exposures in predicting 
future asthma exacerbations has not been well-studied.

Over the past decade, electronic health record (EHR) 
systems, which contain detailed patient-level clinical 
data, have allowed the development and implementa-
tion of automated clinical decision support (CDS) tools 
[6]. Such tools have the potential to assist in the iden-
tification of patients at highest risk of poor outcomes 
in a variety of disease states, including asthma. To date, 
development of asthma exacerbation risk prediction 
models has focused on healthcare utilization and clini-
cal characteristics [4]; however, the numerous factors 
that can affect exacerbation risk are not captured by 
most EHR systems, including housing and neighbor-
hood characteristics and changes in common contrib-
uting exposures such as weather, outdoor allergens, and 
respiratory infections. There is a critical need to evalu-
ate how such contextualizing information could poten-
tially improve asthma CDS tools. The goal of this study 
was to evaluate the contribution of forms of data that 
are not typically available within the EHR (i.e., spatially 
and temporally resolved environmental data) to the 
performance of asthma exacerbation prediction mod-
els. Herein, we combined clinical data from a cohort of 
children with asthma with spatial and temporal envi-
ronmental data to assess how well these different data 
sources contributed to the performance of risk predic-
tion models for asthma exacerbations over different 
time horizons.

Materials and methods
Study population
The study was conducted using retrospective data from 
Duke University Health System (DUHS). DUHS con-
sists of one tertiary care and two community-based 
hospitals, and a network of primary care and spe-
cialty clinics that have utilized a single EHR system 
since 2014. DUHS is the primary provider in Durham 
County, North Carolina, and we have internally esti-
mated that ~ 85 percent of children in Durham County 
receive healthcare through DUHS [7]. We abstracted 
clinical data through Duke’s EHR-based Clinical 
Research Datamart from January 1, 2014, to December 
31, 2019 [8]. We identified children (age 5–18), living in 
Durham County with asthma. We used a previously val-
idated definition that has a positive predictive value of 
97% [9]. As previously described, we classified children 
as having asthma if they met one of the following sets 
of criteria: (1) two or more outpatient or emergency 
health care encounters associated with an Interna-
tional Classification of Diseases, Ninth/Tenth Revision 
(ICD-9/ICD-10) code for asthma (Additional file  1: 
Table  S1) and an active prescription for one or more 
medications for asthma (Additional file  1: Table  S2); 
(2) at least one hospital encounter associated with an 
ICD-9/ICD-10 for asthma and an active prescription 
for one of more medications for asthma; or (3) a prob-
lem list entry with an asthma-related ICD-9/ICD-10 
code and an active prescription for one or more medi-
cations for asthma (Fig. 1). We identified 6395 children 
who met the study criteria for asthma; of these, 6163 
were in the cohort for the full study period. Of these 
patients, 181 were missing either address or BMI data 
during the study period and were therefore excluded 
from further analysis.

Patient person-time was calculated from time of posi-
tive asthma identification until censoring. Censoring was 
based on aging out of the cohort (≥ 18  years), an indi-
cated address outside of Durham County, or at the last 
known encounter. Additionally, we applied a six-month 
burn-in and burn-out period to ensure data reliability, 
resulting in a total of five years of data (July 1, 2014 – 
June 30, 2019).

Outcome of interest
The primary outcome of interest was an asthma-related 
exacerbation, which was defined as any encounter with 
an asthma-related ICD9 or -10 code and a prescription 
for a systemic steroid (see Additional file  1: Table  S2). 
We considered four different types of exacerbations 
based on severity (listed in decreasing severity): (1) inpa-
tient encounters lasting more than 24  h, (2) emergency 
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department and hospital encounters lasting less than 
24 h, (3) urgent care visits, and (4) outpatient (including 
telephone-based) encounters.

Predictor variables
Clinical predictors were abstracted from EHR data and 
were updated on a person-month basis. We abstracted 
clinical and socio-demographic information on each 
child from the EHR, including sex, age, race, insurance 
type (public, private, self-pay), comorbidities (atopy, 
obesity), medication prescriptions. Each participant was 
categorized based on type of prescribed asthma control-
ler plan (i.e., only rescue medications, only inhaled cor-
ticosteroids or only leukotriene receptor antagonists, or 
other controller medications). Patient service utiliza-
tion history (including asthma-related encounters and 
encounters for other indications) was separated into 
three categories: ambulatory visits (i.e., any outpatient 
care, including specialist care and sick visits at both 
urgent care centers and primary care providers, regard-
less of associated diagnoses), emergency department 
encounters, and inpatient admissions. Well child visits 

were considered as a separate category, as prior work has 
demonstrated a beneficial effect of these visits among 
children with asthma [10].

Spatial data
Neighborhood-level environmental data were derived 
based on patient address. We used the latitude–longitude 
of patient time-resolved address to geocode each patient. 
We identified each child’s zip code of residence and 
linked data from the American Community Survey to 
calculate the Agency for Healthcare Research and Qual-
ity (AHRQ) socioeconomic status (SES) index, generating 
a score between 0 and 100, with higher scores indicative 
of greater deprivation [11]. We additionally calculated 
distance to major roadways with speed limits greater 
than 55 MPH as described previously, and distance to 
parks, and tree cover for the census block associated 
with each address [12]. Briefly, we used ArcGIS to calcu-
late straight-line distance to roadways for each geocoded 
address within our dataset.

Temporal data
We downloaded daily climate data on daily average tem-
perature, total precipitation, maximum wind speed from 
the National Centers for Ennvironmental Information 
(https://​www.​ncdc.​noaa.​gov/). Air quality data, including 
the maximum sulfur dioxide (SO2) reading and average 
particulate matter 2.5 (PM2.5) concentration were down-
loaded from the US Environmental Protection Agency 
(https://​www.​epa.​gov/​outdo​or-​air-​quali​ty-​data/​downl​
oad-​daily-​data). Pollen counts for trees weeds and grasses 
were downloaded from the North Carolina Department 
of Environmental Quality Pollen Monitoring program 
(https://​deq.​nc.​gov/​about/​divis​ions/​air-​quali​ty/​air-​quali​
ty-​monit​oring/​pollen-​monit​oring). Pollen data were log 
transformed to normalize the data, which is required for 
use in linear-based modeling methods such as LASSO. 
Pollen data were not available in winter months, as the 
local monitoring station does not take readings during 
this period due to the very low levels of pollen during 
winter; thus, these periods were imputed to have pol-
len counts of zero. We also calculated seasonal influenza 
burden by abstracting the daily number of influenza 
tests performed at the institution in that month. We also 
included index month from when the prediction would 
be made.

Data formatting
Our goal was to develop a CDS tool that identifies chil-
dren on a monthly basis at greatest risk for asthma exac-
erbation. As such, we organized the data into patient 
month format, creating a row for each month a patient 
was eligible to be included in the study, and updating 

Fig. 1  Consolidated standards of reporting trials diagram

https://www.ncdc.noaa.gov/
https://www.epa.gov/outdoor-air-quality-data/download-daily-data
https://www.epa.gov/outdoor-air-quality-data/download-daily-data
https://deq.nc.gov/about/divisions/air-quality/air-quality-monitoring/pollen-monitoring
https://deq.nc.gov/about/divisions/air-quality/air-quality-monitoring/pollen-monitoring
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all time varying factors. Time varying factors included: 
address (using the last known value in the prior month); 
insurance (using the last known value in the prior 
month); number of healthcare encounters (outpatient, 
emergency, and inpatient), regardless of cause, in the pre-
vious 30 and 365  days; an indicator for whether a child 
had a well-child visit in the previous year; and the aver-
age of each of the temporal factors in the prior month. To 
build a predictive model, we generated three outcomes 
for each patient-month: whether a patient had an exacer-
bation in the forthcoming 30-, 90- and 180- days.

Statistical analysis
We divided the data at the patient level into training and 
testing sets in a 67%/33% ratio. We used LASSO, Ran-
dom Forests, and xgBoost to build our predictive mod-
els. LASSO, or Least Absolute Shrinkage and Selection 
Operator, is a linear regression-based model that uses 
shrinkage and L1 regularization to produce sparse mod-
els. The glmnet package in R was used was used to create 
the LASSO models [13]. Random Forests is a tree-based 
machine learning algorithm that can handle disparate 
data types and model complex effects (i.e., non-linearities 
and interactions). The ranger package in R was used to 
create Random Forest models [14]. xgBoost, or Extreme 
Gradient Boosting, is a gradient-boosted decision tree 
machine learning library that utilizes iterative learning to 
optimize prediction. The gbm package in R was used to 
develop xgBoost models [15]. Training data were used to 
optimize each algorithm, and model tuning parameters 
were chosen via internal cross-validation. For LASSO, 
we optimized the lambda (shrinkage) parameter. For 
Random Forests we optimized the “mtry” (variable to 
select) parameter, fixing the algorithm at 4000 trees. For 
xgBoost, we set the number of splits at two and the learn-
ing rate at 0.01 and learned an early stopping rule for the 
number of trees. We initially built 15 different primary 
models, using three different time horizons with 5 differ-
ent sets of predictors. We first used all of the predictor 
variables to train a model to predict 30-, 90-, and 180-day 
risk of exacerbation. Next, we separated the predictor 
variables based on whether they were clinical, neighbor-
hood or environmental factors, fitting separate models 
for each predictor group (see Additional file 1: Table S3 
for a description of the factors included in each model). 
Finally, we considered a simpler, parsimonious model 
that includes data readily available to both patients/fami-
lies and clinicians: age, sex, race, presence of either atopy 
or obesity, and current medications. The ROCR pack-
age in R was used to evaluate model performance and to 
compare results across models [16]. We used the test data 
to calculate the area under the receiver operator charac-
teristic (AUROC). We used the bootstrap, resampling at 

the patient level, to calculate 95% confidence intervals. 
We compared the performances of the different mod-
els by calculating the delta AUROC and a bootstrap for 
95% confidence intervals. Finally, we assessed the impact 
of decision making by calculating the Precision-Recall 
Curve and evaluated the sensitivity and positive predic-
tive value (PPV) at different cut-points. All analyses were 
performed in R 4.1.0 [17]. This work was approved by the 
Duke University Health System IRB.

Results
Patient characteristics
We identified 5982 children with a total of 17,907.56 
patient-years (Fig.  1, Table  1). The patient population 
had slightly more male than female patients (56%). The 
majority of patients in the cohort were listed as non-His-
panic Black (58.1%); 12.4% of patients were of Hispanic 
ethnicity; 20.2% of patients were identified as non-His-
panic white, and 9.4% of patients were of unknown or 
other race/ethnicity. A majority of patients in the cohort 
had a history of atopy (62%) and allergic rhinitis (56%) 
(Table 1).

There were 5045 exacerbations documented in our 
dataset, with an average of 0.27 exacerbations per patient 
year; 37% of patients had at least one asthma exacerba-
tion during the study period. We evaluated the seasonal 
variability of asthma exacerbation incidence during the 
observation period (Fig. 2), and identified September as 
the month with the greatest average number of exacerba-
tions, as has been documented previously [18].

Performance of predictive models
We created person-month models using LASSO, Ran-
dom Forest, and xgBoost models that used all available 
data (Table  2, “Overall”), including clinical, spatial, and 
temporal factors. The predicted event rate and AUC 
for the three time horizons (30-, 90-, and 180-days) are 
shown in Table  2. Model performance was better for 
near-term than for long-term outcomes for all modeling 
approaches. Performance of models developed using 
Gradient Boosting was nominally better than models 
using either LASSO or Random Forests. We evaluated 
the relative contributions of temporal, spatial, and clini-
cal factors on model performance for predicting exacer-
bations. We found that clinical factors drove most of the 
model performance, regardless of modeling approach, 
with the temporal factors having reduced predictive 
value and spatial factors having minimal predictive value.

Evaluation of the contribution of different types of data 
to model performance
To better understand the opportunity to create a model 
for which patients and/or their parents could readily 
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provide the necessary information, we constructed a 
parsimonious model that uses basic demographics (age, 
race, ethnicity), comorbidities (atopy and obesity), and 
currently prescribed asthma medications. Below, we 
highlight the results of the xgBoost model, as its perfor-
mance was nominally better than either Random Forest 
or LASSO. The parsimonious model (AUC = 0.664 for 
the 30-day time horizon) did not perform as well as the 
overall model (AUC = 0.761 for the 30-day time hori-
zon) or the clinical factors-based model (AUC = 0.742 
for the 30-day time horizon) (Table 2). When comparing 
the performance of the xgBoost model using all data ele-
ments to the one using only clinical data, we found the 
full model was nominally better for near term outcomes, 
and not any better for the longer 180-day outcome 
(Table 3). Conversely, when comparing the clinical model 
to the parsimonious model, we found that the perfor-
mance of the clinical model was significantly better for all 
time horizons.

Assessment of overall model sensitivity and positive 
predictive value
Finally, we assessed the performance of a decision rule 
to guide clinical decision support using each of the mod-
els based on clinical factors (Fig. 3). For the 30-day time 
horizon, if we desire a sensitivity of ~ 70%, we would only 

have a PPV of ~ 2.9% using a xgBoost model. Conversely, 
if we used the 180-day time horizon, we would have a 
PPV of ~ 13.8%. Similarly, if we wanted a PPV of ~ 15% we 
would have a sensitivity of 66.2% from the 180-day time 
horizon, versus a sensitivity of 1.5% from the 30-day time 
horizon.

Discussion
In this work we explored the potential for developing a 
clinical decision support tool to identify children at high 
risk of an asthma exacerbation over a 30-, 60, and 180-
day period. We used data that are commonly captured 
within EHR systems and also included spatial and tempo-
ral environmental data that are publicly available and not 
routinely captured within EHRs. A model that included 
all predictor variables had moderate performance 
(AUC ~ 76%) over all three time horizons, though the 
PPV was greatest for the 180-day period. Notably, model 
performance was predominately driven by data captured 
in the EHR, including patient demographics and service 
utilization history. The inclusion of spatial and temporal 
factors did not significantly improve model performance.

Prior studies have attempted to identify clusters of 
factors that can predict risk of asthma exacerbation 
in children and adolescents. The strongest predictive 
factor previously identified is having had an asthma 

Table 1  Characteristics of the study population

Characteristics N or Median IQR or %

Age 8.7 (6.5, 12.5)

Sex N %

 Female 2792 43.7%

 Male 3603 56.3%%

Race/Ethnicity N %

 Hispanic 790 12.4%

 Non-Hispanic Black 3713 58.1%

 Non-Hispanic White 1289 20.2%

 Other/Unknown 603 9.4%

Comorbidities* N %

 History of any atopic disease 3929 61.4%%

 Allergic rhinitis and conjunctivitis 3485 54.5%

 Food allergy 325 5.1%

 Eczema 992 15.5%

 Obesity 1489 25.4%

Exacerbation rate Rate (100 person-years)

All exacerbations 27.65

 Hospital encounters > 24 h 2.11

 ED and hospital encounters < 24 h 6.94

 Urgent care encounters 6.25

 All other outpatient encounters 12.35
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exacerbation in the previous year [19–24]. Similarly, we 
also found that models that incorporated past health-
care utilization were most predictive. Other studies 
have incorporated laboratory values, such as aeroaller-
gen sensitization and eosinophil and IgE levels, to pre-
dict exacerbations, though we found that few children in 
our cohort had these measures available. The Seasonal 
Asthma Exacerbation Index (saEPI) used these vari-
ables along with lung function parameters and asthma 

medication information to predict which children were 
at risk of exacerbation during the fall peak, and this 
index was shown to reliably predict which children were 
unlikely to experience an exacerbation, but was less suc-
cessful identifying children who were at risk of an exac-
erbation [25]. Similarly, a machine learning model that 
included 142 variables, including demographics, neigh-
borhood characteristics, laboratory results, vital signs, 
diagnosis codes, medications, insurance, encounters, and 

Fig. 2  Asthma exacerbation rates across the study period. A The number of asthma exacerbations per month during the study period. B The 
average number of asthma exacerbations observed in each calendar month during the study period
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past healthcare utilization, had a high negative predic-
tive value for patients with asthma who would not have 
an emergency department visit or hospitalization in the 
following year; however, the PPV of the model was under 
25% [26]. Other models have included additional types 
of data, including patient symptom reports and remote 
monitoring data. Finkelstein and Jeong used daily adult 
asthma patient reports of symptoms and medication 
use and tele-monitoring of in-home spirometry to pre-
dict asthma exacerbations within a 1-week window [27]. 
This approach resulted in a model with a strong PPV 
for acute exacerbations; however, the heavy reliance on 

patient-supplied data would likely be difficult to imple-
ment broadly and in younger patients.

We found that the inclusion of spatial and tempo-
ral information was of limited added value in predict-
ing future asthma exacerbations. Previous work by us 
and others has shown minimal added predictive value 
of neighborhood information for risk prediction mod-
els [28, 29]. Moreover, while environmental factors can 
impact risk of asthma exacerbation [30, 31], the epi-
demiological literature has shown relatively weak and 
inconsistent effects [32–34]. Importantly, most studies to 
date, including ours, have not included indoor environ-
mental exposures, which may influence risk of asthma 

Table 3  Comparison of the overall, clinical, and parsimonious models created with different modeling methods

Outcome AUC​ P value

Overall model Clinical factors Parsimonious 
model

Overall model vs. 
Clinical factors

Clinical factors vs. 
Parsimonious model

Comparison of the overall, clinical, and parsimonious models of LASSO models

 Exacerbation in 30 days 0.753 0.734 0.667  < 0.001  < 0.001

 Exacerbation in 90 days 0.740 0.732 0.643  < 0.001  < 0.001

 Exacerbation in 180 days 0.732 0.729 0.645 0.026  < 0.001

Comparison of the overall, clinical, and parsimonious models of Random Forest Survival models

 Exacerbation in 30 days 0.757 0.741 0.672  < 0.001  < 0.001

 Exacerbation in 90 days 0.747 0.738 0.644  < 0.001  < 0.001

 Exacerbation in 180 days 0.729 0.725 0.648 0.019  < 0.001

Comparison of the overall, clinical, and parsimonious models of Gradient Boosting (xgBoost) models

 Exacerbation in 30 days 0.761 0.742 0.664  < 0.001  < 0.001

 Exacerbation in 90 days 0.752 0.744 0.639  < 0.001  < 0.001

 Exacerbation in 180 days 0.739 0.730 0.640  < 0.001  < 0.001

Fig. 3  The relationship between the sensitivity and positive predictive value over three different time horizons. A Precision-Recall Curve was 
used to evaluate the sensitivity and positive predictive value (PPV) at different cut-points using a model based on clinical factors and patient 
characteristics (the “Clinical Factors” model)
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exacerbation. Moreover, readily available measures of 
outdoor environmental exposures may not be sufficiently 
granular to be informative on an individual patient level. 
For example, the data used in our model is derived from 
a single sensor within Durham County; thus, these data 
may not have sufficient resolution to provide an accurate 
estimate of exposure for all patients.

This work also highlights the impact of considering the 
time horizon over which predictions are made. Most of 
the studies conducted testing predictive models based 
on multiple patient-level factors have focused on predic-
tion of exacerbations 6 to12 months into the future [19–
24, 26]. Our models had slightly better performance for 
near-term (30-days) versus longer-term (180  days) out-
comes. These results are in alignment with previous work 
showing that the granular nature of EHR data are well 
suited for nearer-term prediction [35]. However, when, 
we considered the performance of a decision rule with 
specified risk levels, the longer-term model had more 
practical real-world performance based on positive pre-
dictive value. The improved performance over a longer 
time horizon is due to the meaningfully higher event 
rate of events during the 180-day time horizon (7.3% vs 
1.5%). While this result is not surprising, it highlights the 
importance of considering event rates when translating a 
risk model into a decision support tool.

In considering how a CDS tool to identify children at 
risk of an asthma exacerbation could be implemented, 
it is important to consider the types of data that are 
required for the underlying model and the clinical goals 
of the tool. Our results demonstrate that a model using 
data that are commonly available in our EHR system per-
formed as well a model that includes basic spatio-tem-
poral environmental data. Second, our data suggest that 
a CDS tool focused on relatively short-term outcomes 
would be most likely to provide actionable results. Fur-
ther, the time horizon in which the model performs best 
informs the types of interventions that would be directed 
by the CDS tool.

There are some limitations to this work. Mainly, this 
is a single center study, and the results may not be fully 
generalizable. Additionally, model performance may be 
influenced by study location, wherein locales with dif-
ferent types of spatio-temporal variability would yield 
different results. For example, Durham County has 
relatively few poor air quality days, leading to a model 
that is less reliant on air pollution data. In contrast, 
locations such as Los Angeles or Atlanta tend to have 
more days with poor air quality; thus, environmental 
data may be more important for predictive models for 
patients living in those regions. Moreover, the outdoor 
environmental data used for this study was derived 
from a single sensor site in central Durham County; 

thus, these data may lack sufficient granularity to 
detect differences in exposures across the study cohort. 
Finally, we were not able to account for all variables 
that may have a significant impact on the likelihood 
of asthma exacerbations, including medication refill 
data, indoor environmental and direct respiratory virus 
exposures. Future studies will be needed to evaluate the 
importance of variables that could not be included in 
the current study and to evaluate the transportability of 
the models developed in this study to patient popula-
tions from other health systems.

In conclusion, we developed multiple predictive mod-
els for pediatric asthma exacerbations that included data 
that are commonly available in EHR systems as well as 
contextualizing spatio-temporal data. We found that the 
inclusion of spatio-temporal data did not significantly 
increase the performance of a model that used EHR data. 
Importantly, while our models exhibited nominally bet-
ter performance over a 30-day time horizon compared 
to longer time periods, the decision rule metrics—based 
on sensitivity and PPV—were better for longer term (i.e., 
180  day) time horizons. These findings have important 
implications for the design and implementation of CDS 
tools to identify children who would benefit from inter-
ventions to prevent asthma exacerbations.
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